library(Stat2Data)
library(leaps)

options(repr.plot.width=8, repr.plot.height=8)

Problem 1
data(HighPeaks)
head (HighPeaks)

A data.frame: 6 x 6
Peak Elevation Difficulty Ascent Length Time

<fct> <int> <int> <int> <dbl> <dbl>
1 Mt. Marcy 5344 5 3166 14.8 10.0
2 Algonquin Peak 5114 5 2936 9.6 9.0
3 Mt. Haystack 4960 7 3570 17.8 12.0
4 Mt. Skylight 4926 7 4265 17.9 15.0
5 Whiteface Mtn. 4867 4 2535 10.4 8.5
6 Dix Mtn. 4857 5 2800 13.2 10.0
a.

Peak contains the name of each mountain. This isn't a useful variable for developing a regression model.

models <- regsubsets(Time ~ Elevation + Difficulty + Ascent + Length,
data = HighPeaks, nbest = 2)

sum <— summary(models)

cbind(as.data.frame(sum$outmat), sum$rsq, sum$adjr2, sum$cp)

A data.frame: 7 x 7

Elevation Difficulty Ascent Length sum$rsq sum$adjr2 sum$cp

<chr> <chr> <chr> <chr> <dbl> <dbl> <dbl>
1(1) * 0.7370358 0.7310593 25.412218
1(2) * 0.6566249 0.6488209 46.025951
2(1) * * 0.7962182 0.7867400 12.240486
2(2) * * 0.7702826 0.7595980 18.889226
3(1) * * * 0.8272018 0.8148590 6.297702
3(2) * * * 0.7995560 0.7852385 13.384844
4(1) * * * * 0.8400656 0.8244622 5.000000

The highest R? (and adjusted R?) comes from model 4(1), with Elevation, Difficulty, Ascent, and Length as
explanatory variables. We fit the model below:

fit <- lm(Time ~ Elevation + Difficulty + Ascent + Length, data = HighPeaks)
summary (fit)



Call:
Im(formula = Time ~ Elevation + Difficulty + Ascent + Length,
data = HighPeaks)

Residuals:
Min 1Q Median 3Q Max
-1.77942 -0.81216 -0.08647 0.68962 3.06736

Coefficients:
Estimate Std. Error t value Pr(>|t]|)
(Intercept) 5.9567864 2.2307630 2.670 0.01082 *

Elevation -0.0016703 0.0005183 -3.223 0.00249 *x*
Difficulty  0.8654527 0.2285275 3.787 0.00049 x*x*x*

Ascent 0.0006011 0.0003310 1.816 0.07669 .

Length 0.4440084 0.0812523  5.465 2.49e-06 *kx

Signif. codes: 0 ‘skkx’' 0.001 ‘*xx’ 0.01 ‘x’' 0.05 ‘." 0.1 ‘' 1

Residual standard error: 1.171 on 41 degrees of freedom
Multiple R-squared: 0.8401, Adjusted R-squared: 0.8245
F-statistic: 53.84 on 4 and 41 DF, p-value: 8.738e-16

The fitted model is

Time = 5.9567864 — 0.0016703 Elevation + 0.8654527 Difficulty + 0.0006011 A scent
+ 0.4440084 Length

The R2 is 0.8401.

b.

set.seed(2022)
train = sample(46, 36)

Build and fit the model using the training sample:

fit.training <- lm(Time ~ Length, data = HighPeaks[train,])
summary (fit.training)

Call:
Im(formula = Time ~ Length, data = HighPeaks[train, 1)

Residuals:
Min 1Q Median 3Q Max
-2.5011 -0.7828 0.0827 0.6107 3.9475

Coefficients:

Estimate Std. Error t value Pr(>|t]|)
(Intercept) 2.02529 0.90221  2.245 0.0314 *
Length 0.68920 0.07006 9.838 1.77e-11 *xx

Signif. codes: 0 ‘skx’ 0.001 ‘*xx’ 0.01 ‘x’' 0.05 ‘.’ 0.1 ‘' 1
Residual standard error: 1.466 on 34 degrees of freedom

Multiple R-squared: 0.74, Adjusted R-squared: 0.7324
F-statistic: 96.78 on 1 and 34 DF, p-value: 1.77e-11

Predict Time based on the holdout sample:

time.hat <- predict(fit.training, newdata = HighPeaks[-train,])

Compute the cross-validation correlation:

cor(time.hat, HighPeaks[-train,]$Time)



0.851089332424344

Problem 2

data(Leafhoppers)
head(Leafhoppers)

A data.frame: 6 x 3
Dish Diet Days

<int> <fct> <dbl>

1 1 Control 2.3
2 2 Control 17
3 3 Sucrose 3.6
4 4 Sucrose 4.0
5 5 Glucose 2.9
6 6 Glucose 2.7
a.

This is an experiment: the researchers control the values of the explanatory variable Diet.

b.

boxplot(Leafhoppers$Days ~ Leafhoppers$Diet)
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C.

y.bar <- mean(Leafhoppers$Days)



y.bar

2.7

d.

y.bar.k <- tapply(Leafhoppers$Days, Leafhoppers$Diet, mean)
alpha.k <- y.bar.k - y.bar

alpha.k

Control: -0.7 Fructose: -0.5 Glucose: 0.0999999999999996 Sucrose: 1.1

e.

Each population (group) has the same standard deviations

As we see below,

max SD N 0.4242 ~3
min SD  0.1414

which is larger than the 2 that our rule of thumb from class allows. This condition is violated.

tapply(Leafhoppers$Days, Leafhoppers$Diet, sd)

Control: 0.424264068711928 Fructose: 0.141421356237309 Glucose: 0.141421356237309 Sucrose:
0.282842712474619

0.4242/0.1414

3

Each population (group) is Normal
As we see below, the Normal Q-Q plot of the residuals of the one-way ANOVA is an approximately straight line. This

condition is satisfied.

test <- aov(Days ~ Diet, data = Leafhoppers)
ggnorm(residuals(test))
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After accounting for group membership, responses are independent

The groups - in this case, the diets — were randomly assigned, so responses should be independent after accounting for
group membership. This condition is satisfied.

f.

We fit the one-way ANOVA model in part €, in order to check the Normality of the residuals.

summary (test)

Df Sum Sq Mean Sq F value Pr(>F)
Diet 3 3.92 1.307 17.42 0.00925 *x
Residuals 4 0.30 0.075

Signif. codes: @ ‘skkx’' 0.001 ‘*xx’ 0.01 ‘x’' 0.05 ‘.’ 0.1 ‘' 1

We perform a one-way ANOVA F'-test:
1. The hypotheses:
Hy : pcontrol = W Fructose = [hGlucose = MSucrose VS. H 4 : at least one of the uy is diferent
2. Test statistic: F' = 17.42
3. p-value = 0.00925

4. Assume a significance level of 0.05. Since the p-value is less than 0.05, we reject H,. We see significant evidence
that the mean time until half the leafhoppers in a dish died differs by diet.

g.

alpha <- 0.05



n <- nrow(Leafhoppers)
K <- 4 # control, fructose, glucose, sucrose

t <-= qt(1 - alpha/2, df = n - K)
sd <- sqrt(0.075)
n.k <- tapply(Leafhoppers$Days, Leafhoppers$Diet, length)

ci.lower <- y.bar.k = t * sd * sqrt(1 / n.k)
ci.upper <- y.bar.k + t * sd * sqrt(1 / n.k)

ci.lower
ci.upper

Control: 1.46234371729549 Fructose: 1.66234371729549 Glucose: 2.26234371729549 Sucrose: 3.26234371729549
Control: 2.53765628270451 Fructose: 2.73765628270451 Glucose: 3.33765628270451 Sucrose: 4.33765628270451

The 95% CI for the mean length of life for leafhoppers on the control diet is (1.46234371729549, 2.53765628270451).

Problem 3

a.

Option (b)

b.

Option (d)

C.
(a) The test statistic for the coefficient of Lotis 5.657/3.075 ~ 1.839.

(b) Yes, at the a = 0.05 level, we have significant evidence that the overall model is effective, because the p-value of
the F'-test (0.000985) is less than a.

(c) No, at the @ = 0.05 level, we do not have significant evidence that Size is associated with Price, after accounting
for Lot, because the p-value 0.2068 is larger than a.

d.

Option (c)

Problem 4

Height = By + B1 Water + B2 FertA + B3( Water x FertA) + ¢
= Bo + B1 Water + B2(1) + B3( Water)(1) + ¢
= (Bo + B2) + (B1 + B3) Water+ ¢

The intercept of for fertilizer A is 8y + [s.

b.

The slope of Water for fertilizer Ais 81 + Bs.



Height = By + B; Water + By FertA + B3( Water x FertA) + ¢
= By + 1 Water + B5(0) + B3( Water)(0) + ¢
= Bo + By Water + ¢

The slope of Water for fertilizer B is 1.

d.

The interaction term Water x FertA.

Problem 5

a.
Null hypothesis Hy : B2 = 83 = 0

Alternative hypothesis H4 : B2 # 0 and/or 33 # 0

b.
The reduced model is

Y =00+ /1 X1+ BaXs+ B5X5 + ¢

C.

Nested F'-test.

d.

(i) The SSE for reduced model is 36.234. (Row 1 of the table corresponds to the first argument given to anova , and row
2 corresponds to the second argument.)

(i) The degrees of freedom is n — (k + 1), where k is the number of predictors.
So, using information about the reduced model, we have n — (3 + 1) = 31, orn = 35.
Equivalently, using information about the full model, we have n — (5 + 1) = 29, or n = 35.

(iii) Assuming a significance level of a = 0.05, we fail to reject the null hypothesis, because the p-value 0.6071 is greater
than a.

We conclude that we do not see evidence that including X5 and X3 provides a significant improvement. We should use
the reduced model.



