```
In [1]: library(Stat2Data)
library(leaps)
```

In [2]: options(repr.plot.width=8, repr.plot.height=8)

Problem 1

In [3]: data(HighPeaks)
head(HighPeaks)

A data.frame: 6 × 6

	Peak	Elevation	Difficulty	Ascent	Length	Time
	<fct></fct>	<int></int>	<int></int>	<int></int>	<dbl></dbl>	<dbl></dbl>
1	Mt. Marcy	5344	5	3166	14.8	10.0
2	Algonquin Peak	5114	5	2936	9.6	9.0
3	Mt. Haystack	4960	7	3570	17.8	12.0
4	Mt. Skylight	4926	7	4265	17.9	15.0
5	Whiteface Mtn.	4867	4	2535	10.4	8.5
6	Dix Mtn.	4857	5	2800	13.2	10.0

a.

Peak contains the name of each mountain. This isn't a useful variable for developing a regression model.

A data.frame: 7 × 7

	Elevation	Difficulty	Ascent	Length	sum\$rsq	sum\$adjr2	sum\$cp
	<chr></chr>	<chr></chr>	<chr></chr>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
1(1)				*	0.7370358	0.7310593	25.412218
1(2)		*			0.6566249	0.6488209	46.025951
2 (1)		*		*	0.7962182	0.7867400	12.240486
2(2)	*			*	0.7702826	0.7595980	18.889226
3 (1)	*	*		*	0.8272018	0.8148590	6.297702
3 (2)		*	*	*	0.7995560	0.7852385	13.384844
4 (1)	*	*	*	*	0.8400656	0.8244622	5.000000

The highest \mathbb{R}^2 (and adjusted \mathbb{R}^2) comes from model 4(1), with Elevation, Difficulty, Ascent, and Length as explanatory variables. We fit the model below:

```
In [5]: fit <- lm(Time ~ Elevation + Difficulty + Ascent + Length, data = HighPeaks)
summary(fit)</pre>
```

```
lm(formula = Time ~ Elevation + Difficulty + Ascent + Length,
            data = HighPeaks)
        Residuals:
             Min
                           Median
                       10
                                         30
                                                 Max
        -1.77942 -0.81216 -0.08647 0.68962 3.06736
        Coefficients:
                      Estimate Std. Error t value Pr(>|t|)
        (Intercept) 5.9567864 2.2307630
                                           2.670 0.01082 *
        Elevation -0.0016703 0.0005183 -3.223 0.00249 **
                                           3.787 0.00049 ***
        Difficulty 0.8654527 0.2285275
        Ascent
                     0.0006011 0.0003310
                                           1.816 0.07669 .
        Length
                     0.4440084 0.0812523 5.465 2.49e-06 ***
        Signif. codes: 0 '*** 0.001 '** 0.01 '* 0.05 '.' 0.1 ' ' 1
        Residual standard error: 1.171 on 41 degrees of freedom
        Multiple R-squared: 0.8401, Adjusted R-squared: 0.8245
        F-statistic: 53.84 on 4 and 41 DF, p-value: 8.738e-16
        The fitted model is
                    Time = 5.9567864 - 0.0016703 Elevation + 0.8654527 Difficulty + 0.0006011 Ascent
                                                 +\ 0.4440084 Length
        The R^2 is 0.8401.
        b.
In [6]: set.seed(2022)
        train = sample(46, 36)
        Build and fit the model using the training sample:
In [7]: fit.training <- lm(Time ~ Length, data = HighPeaks[train,])</pre>
        summary(fit.training)
        lm(formula = Time ~ Length, data = HighPeaks[train, ])
        Residuals:
            Min
                     10 Median
                                     30
                                            Max
        -2.5011 -0.7828 0.0827 0.6107 3.9475
        Coefficients:
                    Estimate Std. Error t value Pr(>|t|)
        (Intercept) 2.02529 0.90221 2.245 0.0314 *
        Length
                     0.68920
                                0.07006
                                         9.838 1.77e-11 ***
        Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
        Residual standard error: 1.466 on 34 degrees of freedom
        Multiple R-squared: 0.74,
                                        Adjusted R-squared: 0.7324
        F-statistic: 96.78 on 1 and 34 DF, p-value: 1.77e-11
        Predict Time based on the holdout sample:
In [8]: time.hat <- predict(fit.training, newdata = HighPeaks[-train,])</pre>
        Compute the cross-validation correlation:
In [9]: cor(time.hat, HighPeaks[-train,]$Time)
```

Problem 2

In [10]: data(Leafhoppers)
head(Leafhoppers)

	A data.frame: 6×3					
	Dish	Diet	Days			
	<int></int>	<fct></fct>	<dbl></dbl>			
1	1	Control	2.3			
2	2	Control	1.7			
3	3	Sucrose	3.6			
4	4	Sucrose	4.0			
5	5	Glucose	2.9			
6	6	Glucose	2.7			

a.

This is an experiment: the researchers control the values of the explanatory variable Diet.

b.

In [11]: boxplot(Leafhoppers\$Days ~ Leafhoppers\$Diet)

C.

y.bar

2.7

d.

```
In [13]: y.bar.k <- tapply(Leafhoppers$Days, Leafhoppers$Diet, mean)
alpha.k <- y.bar.k - y.bar
alpha.k</pre>
```

Control: -0.7 Fructose: -0.5 Glucose: 0.099999999999996 Sucrose: 1.1

e.

Each population (group) has the same standard deviations

As we see below,

$$\frac{\max \mathrm{SD}}{\min \mathrm{SD}} \approx \frac{0.4242}{0.1414} \approx 3,$$

which is larger than the 2 that our rule of thumb from class allows. This condition is violated.

```
In [14]: tapply(Leafhoppers$Days, Leafhoppers$Diet, sd)
```

Control: 0.424264068711928 **Fructose:** 0.141421356237309 **Glucose:** 0.141421356237309 **Sucrose:** 0.282842712474619

```
In [15]: 0.4242/0.1414
```

3

Each population (group) is Normal

As we see below, the Normal Q-Q plot of the residuals of the one-way ANOVA is an approximately straight line. This condition is satisfied.

```
In [16]: test <- aov(Days ~ Diet, data = Leafhoppers)
    qqnorm(residuals(test))</pre>
```

Normal Q-Q Plot

After accounting for group membership, responses are independent

The groups – in this case, the diets – were randomly assigned, so responses should be independent after accounting for group membership. This condition is satisfied.

f.

We fit the one-way ANOVA model in part e, in order to check the Normality of the residuals.

In [17]: summary(test)

```
Df Sum Sq Mean Sq F value Pr(>F)
Diet 3 3.92 1.307 17.42 0.00925 **
Residuals 4 0.30 0.075
---
Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
```

We perform a one-way ANOVA F-test:

1. The hypotheses:

```
H_0: \mu_{Control} = \mu_{Fructose} = \mu_{Glucose} = \mu_{Sucrose} \quad 	ext{vs.} \quad H_A: 	ext{at least one of the $\mu_k$ is different}
```

- 2. Test statistic: F=17.42
- 3. p-value = 0.00925
- 4. Assume a significance level of 0.05. Since the p-value is less than 0.05, we reject H_0 . We see significant evidence that the mean time until half the leafhoppers in a dish died differs by diet.

g.

In [18]: alpha <- 0.05

```
n <- nrow(Leafhoppers)
K <- 4  # control, fructose, glucose, sucrose

t <- qt(1 - alpha/2, df = n - K)
sd <- sqrt(0.075)
n.k <- tapply(Leafhoppers$Days, Leafhoppers$Diet, length)

ci.lower <- y.bar.k - t * sd * sqrt(1 / n.k)
ci.upper <- y.bar.k + t * sd * sqrt(1 / n.k)</pre>
ci.lower
ci.lower
ci.upper
```

Control: 1.46234371729549 Fructose: 1.66234371729549 Glucose: 2.26234371729549 Sucrose: 3.26234371729549 Control: 2.53765628270451 Fructose: 2.73765628270451 Glucose: 3.33765628270451 Sucrose: 4.33765628270451

The 95% CI for the mean length of life for leafhoppers on the control diet is (1.46234371729549, 2.53765628270451).

Problem 3

a.

Option (b)

b.

Option (d)

C.

- (a) The test statistic for the coefficient of Lot is 5.657/3.075 pprox 1.839.
- (b) Yes, at the $\alpha=0.05$ level, we have significant evidence that the overall model is effective, because the p-value of the F-test (0.000985) is less than α .
- (c) No, at the $\alpha=0.05$ level, we do not have significant evidence that Size is associated with Price, after accounting for Lot, because the p-value 0.2068 is larger than α .

d.

Option (c)

Problem 4

a.

$$Height = eta_0 + eta_1 Water + eta_2 FertA + eta_3 (Water imes FertA) + arepsilon \ = eta_0 + eta_1 Water + eta_2(1) + eta_3 (Water)(1) + arepsilon \ = (eta_0 + eta_2) + (eta_1 + eta_3) Water + arepsilon$$

The intercept of for fertilizer A is $\beta_0 + \beta_2$.

b.

The slope of Water for fertilizer A is $\beta_1 + \beta_3$.

C.

$$Height = eta_0 + eta_1 Water + eta_2 FertA + eta_3 (Water imes FertA) + arepsilon \ = eta_0 + eta_1 Water + eta_2(0) + eta_3 (Water)(0) + arepsilon \ = eta_0 + eta_1 Water + arepsilon$$

The slope of Water for fertilizer B is β_1 .

d.

The interaction term $Water \times FertA$.

Problem 5

a.

Null hypothesis $H_0: \beta_2=\beta_3=0$

Alternative hypothesis $H_A:eta_2
eq 0 ext{ and/or } eta_3
eq 0$

b.

The reduced model is

$$Y = \beta_0 + \beta_1 X_1 + \beta_4 X_4 + \beta_5 X_5 + \varepsilon$$

C.

Nested F-test.

d.

- (i) The SSE for reduced model is 36.234. (Row 1 of the table corresponds to the first argument given to anova, and row 2 corresponds to the second argument.)
- (ii) The degrees of freedom is n-(k+1), where k is the number of predictors.

So, using information about the reduced model, we have n-(3+1)=31, or n=35.

Equivalently, using information about the full model, we have n-(5+1)=29, or n=35.

(iii) Assuming a significance level of $\alpha=0.05$, we fail to reject the null hypothesis, because the p-value 0.6071 is greater than α .

We conclude that we do not see evidence that including X_2 and X_3 provides a significant improvement. We should use the reduced model.